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More than 1.62 million spine surgeries occur an-
nually in the United States.1,2 Postoperative uri-
nary retention (POUR) is a common complica-

tion affecting 6%–38% of patients who undergo elective 
spine surgery.3–5 POUR significantly increases hospital 
length of stay (LOS) by 1–2 days and has been found to 

impede functional recovery.3,5–9 The occurrence of POUR 
increases hospitalization costs by $3565–$4100 per patient 
($2260 for additional hospital LOS, $1103 for costs associ-
ated with complications, and $202–$737 for other hospital 
costs).4,7,9–16

Currently, there are no reliable methods to identify 
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OBJECTIVE  Postoperative urinary retention (POUR) is a common complication after spine surgery and is associated 
with prolongation of hospital stay, increased hospital cost, increased rate of urinary tract infection, bladder overdisten-
tion, and autonomic dysregulation. POUR incidence following spine surgery ranges between 5.6% and 38%; no reliable 
prediction tool to identify those at higher risk is available, and that constitutes an important gap in the literature. The 
objective of this study was to develop and validate a preoperative risk model to predict the occurrence of POUR following 
routine elective spine surgery.
METHODS  The authors conducted a retrospective chart review of consecutive adults who underwent lumbar spine 
surgery between June 1, 2017, and June 1, 2019. Patient characteristics, preexisting ICD-10 codes, preoperative pain 
and opioid use, preoperative alpha-1 blocker use, details of surgical planning, development of POUR, and management 
strategies were abstracted from electronic medical records. A binomial logistic model and a multilayer perceptron (MLP) 
were optimized using training and validation sets. The models’ performance was then evaluated on model-naïve patients 
(not a part of either cohort). The models were then stacked to take advantage of each model’s strengths and to avoid 
their weaknesses. Four additional models were developed from previously published models adjusted to include only 
relevant factors (i.e., factors known preoperatively and applied to the lumbar spine).
RESULTS  Overall, 891 patients were included in the cohort, with a mean of 59.6 ± 15.5 years of age, 52.7% male, BMI 
30.4 ± 6.4, American Society of Anesthesiologists class 2.8 ± 0.6, and a mean of 5.6 ± 5.7 comorbidities. The rate of POUR 
was found to be 25.9%. The two models were comparable, with an area under the curve (AUC) of 0.737 for the regression 
model and 0.735 for the neural network. By combining the two models, an AUC of 0.753 was achieved. With a regression 
model probability cutoff of 0.24 and a neural network cutoff of 0.23, maximal sensitivity and specificity were achieved, with 
specificity 68.2%, sensitivity 72.9%, negative predictive value 88.2%, and positive predictive value 43.4%. Both models 
individually outperformed previously published models (AUC 0.516–0.645) when applied to the current data set.
CONCLUSIONS  This predictive model can be a powerful preoperative tool in predicting patients who will be likely to 
develop POUR. By using a combination of regression and neural network modeling, good sensitivity, specificity, and 
NPV are achieved.
https://thejns.org/doi/abs/10.3171/2021.3.SPINE21189
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those at increased risk for POUR among patients who are 
awaiting elective spine surgery. Although several attempt-
ed prediction models have been published, the strength of 
the proposed predictors varies across studies.3,17–19 Practi-
cally, for preoperative prediction, a single model that can 
be run and interpreted would need to be built into the pre-
operative workflow.3,17–19 The preoperative setting is pre-
ferred to postoperative, because it provides time to arrange 
prophylactic therapies and to avoid known triggers both 
intraoperatively and immediately postoperatively. Factors 
reported to be associated with POUR include older age, 
male sex, obesity, history of back injury or poisoning, his-
tory of urinary retention, benign prostate hyperplasia, uri-
nary tract infection (UTI), surgical time > 3 hours, fusion 
surgery, delayed ambulation > 48 hours, postoperative 
thoracic epidural analgesia, increased fluid volume > 1500 
mL given intraoperatively, higher pain scores, opioid use, 
and use of glycopyrrolate or other anticholinergic medica-
tions.6,9,13,17–21

Our hypothesis in this study was that using regressive 
analysis and neural network modeling, which have been 
shown to be useful machine learning predictive tech-
niques, could both individually and in combination create 
a preoperative tool with good predictive power for POUR. 
The objective of this study was to develop and validate 
a preoperative tool that best predicts the occurrence of 
POUR.

Methods
Part 1: Study Design and Setting

This was a retrospective review approved by the lo-
cal IRB and was aimed at developing an optimal model 
to predict POUR. The first part comprised a retrospec-
tive review of consecutive adult patients who underwent 
lumbar spine surgery between June 1, 2017, and June 1, 
2019, at the University of Florida. Patients were excluded 
if they required emergency surgery, were < 18 years old, or 
had surgery in a nonlumbar region (thoracic or cervical). 
The second part comprised development of two machine 
learning techniques: a binomial logistic regression and an 
artificial neural network classification. These models were 
furthermore combined to optimize prediction strength.

Case Ascertainment
POUR was defined according to previous literature as 

reinsertion of a Foley catheter based on retention urine 
volume > 400 mL, or requiring straight catheterization for 
urine volumes > 400 mL.4,22–27 Urine volume was deter-
mined per standard of care with nurse-led bladder scan-
ning.

Clinical Variables
The patient characteristics, including all preexisting 

ICD-10 codes associated with the patient; age; sex; body 
mass index (BMI); preoperative opioid use (morphine, 
methadone, fentanyl, oxycodone, hydrocodone, meperi-
dine); preoperative urinary retention medication use (tam-
sulosin, doxazosin); planned surgery specifics; and POUR, 
were collected and assessed. Hospital LOS was also re-
corded.

Part 2: Statistical Analysis
Identification of Predictors

Univariate tests were used on the entire set to discover 
factors to include in multivariate analyses, and a Bonfer-
roni correction was used to correct for multiple analyses. 
Mann-Whitney U-tests were used for continuous and 
nominal variables, whereas chi-square tests were used 
for categorical variables. Kruskal-Wallis tests were used 
to compare training, validation, and testing sets. Hospital 
LOS was not included in the final models because this was 
an outcome measure.

Model Derivation
The data were split into training, validation, and testing 

sets using an approximately 65:10:25 ratio.28,29 A binomial 
logistic model—which estimates the probability that an 
outcome is present given the values of explanatory vari-
ables and is typically used for classification—was formed 
with backward elimination based on significant changes 
in likelihood ratios, using a 0.10 cutoff.30,31 All patient de-
mographics and surgical characteristics were included in 
the model, but only comorbidities that had significant cor-
relations with POUR were included (p < 0.05 corrected for 
multiple comparisons).

We used a multilayer perceptron (MLP) neural network 
architecture—attractive because it demonstrates an abil-
ity to learn salient features of the data on its own—which 
consisted of two hidden layers terminating at an output 
layer.19 The first hidden layer consisted of 38 fully con-
nected nodes, whereas the second layer consisted of 21 
fully connected nodes. Hidden layers used a sigmoid ac-
tivation function with no dropout. The output layer used 
an identity activation function and a sum of squares error 
function. The stopping rule was 1 consecutive step with no 
decrease in error based on the validation set.

Three additional regression models were developed 
from previously published models adjusted to include only 
relevant factors, to derive a pragmatic preoperative risk as-
sessment tool (i.e., factors known preoperatively and ap-
plied to the lumbar spine).

Model Validation
Using the same training/validation/testing split on both 

the regression and neural network models, optimal mod-
els were selected by maximizing both adjusted R2 and 
validation set accuracy. Performance of the chosen model 
was then evaluated on the testing set. Performance was 
measured on validation and testing sets combined because 
there was no need for a validation step.

Model Stacking
The models were combined such that if a threshold cut-

off point (different for each model) was exceeded by either 
model, the classification was declared to be positive (i.e., 
the patient is predicted to develop POUR).32 Outcomes 
from all cutoff points from 0.01 to 0.99 for each model 
were compared to maximize each individual outcome 
measure and combinations of outcome measures (i.e., av-
erage sensitivity and positive predictive value [PPV], aver-
age specificity and negative predictive value [NPV], aver-
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age sensitivity and specificity, average NPV and PPV, and 
the average of all outcome measures).

All statistical analyses were performed with SPSS ver-
sion 23 (IBM Corp.). Cutoff points were discovered using 
code developed with Strawberry Perl 5.30.2.1.

Results
Clinical Characteristics

There were a total of 1311 patients who underwent elec-
tive spine surgery in the study period. Of those, 891 were 
included in the analysis, with 369 excluded because they 
were cervical or thoracic surgeries and 51 excluded due to 
missing data. POUR rates were found to be 25.9% in the 
entire cohort. Differences in patient demographics among 
the training/validation/testing split are shown in Table 1. 
The mean age was 59.6 ± 15.5 years, 52.7% were male, the 
mean BMI was 30.4 ± 6.4, the mean American Society of 
Anesthesiologists (ASA) class was 2.8 ± 0.6, and there was 
a mean of 5.6 ± 5.7 comorbidities. The training, validation, 
and testing sets did not differ significantly among age, sex, 
or BMI. The validation set had significantly higher ASA 
class and fewer comorbidities. Conversely, the training 
and testing sets did not vary significantly between these 
factors. Patient demographics and their designated uni-
variate analyses are demonstrated in Fig. 1. Patients who 
developed POUR were significantly older than those who 
did not (62.5 ± 15.1 years vs 58.6 ± 15.5 years; p = 0.0003) 
and were more likely to use preoperative opioids (36.8% 
vs 25.6%; p = 0.001) or preoperative urinary retention 
medications (5.2% vs 2.4%; p = 0.048). Male sex (53.7% 
vs 52.4%; p = 0.760) and BMI (30.2 ± 5.9 vs 30.5 ± 6.6; p = 
0.682) were not found to be significantly different between 
groups. Additionally, rates of POUR were found to be 
significantly higher in cases associated with 65 separate 
preoperative ICD-10 codes or groups of ICD-10 codes, 
including history of urinary retention or UTIs. The differ-
ences in POUR rates for these traits are demonstrated in 
Supplementary Fig. 1. The differences in POUR rates for 
all nonsignificant ICD codes are demonstrated in Supple-
mentary Fig. 2. Hospital LOS for patients with POUR was 
significantly longer than for those without POUR (6.9 ± 
9.5 days vs 2.7 ± 3.0 days; p < 0.0001).

Surgical Characteristics
The difference in POUR rates for individual surgical 

characteristics, as demonstrated in Fig. 2, revealed mul-

tiple surgical predictors of POUR. Rates of POUR were 
significantly lower in discectomies compared to patients 
whose spine surgery did not include discectomies (11.7% 
vs 30.7%; p < 0.0001) even as part of the operation. Rates of 
POUR were found to be higher overall in patients getting 
laminectomies (31.5% vs 17.4%; p < 0.0001) but not when 
only a laminectomy was performed (21.3% vs 27.6%; p = 
0.070). Furthermore, rates were found to be significantly 
higher in multilevel laminectomies (34.5% vs 11.6%; p < 
0.0001) and significantly lower in single-level laminec-
tomies (11.6% vs 34.5%; p < 0.0001). Similarly, rates of 
POUR were found to be higher in surgeries with a fusion 
component (35.7% vs 16.7%; p < 0.0001), except for sin-
gle-level fusions (24.6% vs 26.3%; p = 0.705). Within the 
scope of fusion surgeries, posterolateral fusions showed 
significantly higher rates of POUR (involvement: 39.3% vs 
21.2%; alone: 41.2% vs 23.3%; p < 0.0001 for both), as did 
interbody fusions (32.9% vs 22.7%; p = 0.001) and pelvic 
screw placement (41.2% vs 25.0%; p = 0.014). Minimally 
invasive techniques demonstrated a significantly lower 
rate of POUR (16.1% vs 27.4%; p = 0.009). The average 
number of vertebral levels operated on was found to be 1.8 
± 1.8 in those who did not develop POUR and 2.9 ± 2.8 in 
those who did (p < 0.0001).

Outcomes
Binomial logistic multivariate model results are dem-

onstrated in Table 2. Of the factors included in the model, 
only ICD-10 codes for diabetes (E11.9), abnormal heart-
beat (R00), other general symptoms and signs (R68.89), 
altered mental status (R41.82), and screening for cardio-
vascular disorders (Z13.6) in addition to plans for a single 
laminectomy were found to be significant predictors of 
change in POUR. The ICD code for “other general symp-
toms and signs” and plans for only a single-level lami-
nectomy were found to be significantly protective against 
POUR. For brevity, specific results of the neural network 
model were not included.

Comparison of the predictive outcomes of the two 
models and their combination is illustrated in receiver 
operating characteristic curves in Fig. 3. Table 3 reports 
the performance of the models on the training set, which 
can be viewed as the expected ceiling performance of the 
models.33 The regression model, individually, achieved an 
area under the curve (AUC—an aggregate measure of per-
formance across all possible classification thresholds) of 

TABLE 1. Demographics of overall and training/validation/testing splits in 891 patients who underwent lumbar spine surgery

Variable Overall Training Set Validation Set Testing Set p Value

Frequency 231 150 22 59 —
POUR rate (%) 25.9 26.7 23.4 25.1 0.754
Age, yrs 59.6 ± 15.5 58.7 ± 15.5 57.6 ± 15.1 60.2 ± 15.7 0.282
Male sex (%) 52.7 55.3 45.7 49.4 0.109
BMI, kg/m2 30.4 ± 6.4 30.3 ± 6.3 30.7 ± 7.5 30.7 ± 6.2 0.684
ASA class 2.8 ± 0.6 2.7 ± 0.5 3.7 ± 0.6 2.7 ± 0.6 <0.001
No. of comorbidities 5.6 ± 5.7 6.1 ± 6.1 2.7 ± 4.1 5.7 ± 4.9 <0.001

Unless otherwise indicated, values are expressed as the mean ± SD. Boldface type indicates statistical significance.
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0.737 (training set AUC 0.808); a probability cutoff of 0.34 
maximized the average outcome parameters (specificity 
85.2%, sensitivity 49.2%, NPV 83.3%, and PPV 52.7%). 
The neural network achieved an AUC of 0.735 (training 
set AUC 0.753); a probability cutoff of 0.21 maximized the 
average outcome parameters (specificity 54.5%, sensitivi-
ty 84.7%, NPV 91.4%, and PPV 38.5%). At the same cutoff 
point of 0.5, no significant differences between the models 
were noted in sensitivity, specificity, NPV, or PPV for the 
testing set, as shown in Table 3. When applying four previ-
ously published models to our data set, each provided high 
specificities (94.4%–98.8%) but low sensitivities (6.2%–
7.4%); see Table 3 for detailed results. The AUC was lower 
than in our models, with a range of 0.516–0.645.

The stacking of the two models outperformed the in-
dividual models, with an AUC of 0.753. Optimal cutoff 
points for each model are demonstrated in Table 4. With 
the neural network alone and a cutoff of 0.14, sensitiv-
ity (96.6%) and NPV (96.1%) were simultaneously maxi-
mized, but with sacrifices in specificity (27.8%) and PPV 
(31.0%). With a regression model probability cutoff of 0.24 
and a neural network cutoff of 0.23, sensitivity (72.9%) 
and specificity (68.2%) were simultaneously maximized, 
but with milder sacrifices in PPV (43.4%). With a regres-
sion model probability cutoff of 0.54 and a neural network 
cutoff of 0.43, all outcome parameters were simultaneous-
ly maximized (specificity 99.4%, sensitivity 15.3%, NPV 
77.8%, and PPV 90.0%); however, sensitivity was severely 

sacrificed. Figure 4 demonstrates graphically how the cut-
off points are used to conjoin the models such that a posi-
tive prediction is derived when both the regression model 
predicted probability is greater than 0.54 and the neural 
network model predicted probability is greater than 0.43 
as in Fig. 4A, or greater than 0.24 and 0.23, respectively, 
as in Fig. 4B. A spreadsheet (POUR Prediction Tool) is 
available in the Supplementary Materials, which assists in 
calculating the probability of developing POUR for each 
individual model and for the combined models.

Discussion
In this study, in which the aim was to develop a high-

performing prediction tool for POUR in patients undergo-
ing elective spine surgery, our combined model of bino-
mial logistic regression and neural network outperformed 
each individual candidate strategy as well as four previ-
ously published models with better AUC. POUR is a com-
mon cause of postoperative morbidity and discomfort for 
patients undergoing lumbar spine surgery and has been 
shown to significantly increase hospital LOS.9,13,20,21 This 
was found to be consistent in our study; hospital LOS was 
increased by 4.3 days in the POUR cohort on average, un-
corrected for complexity of surgeries performed. POUR 
has been variably and inconsistently associated with age, 
sex, obesity, operating time, fusion surgery, delayed ambu-
lation, postoperative thoracic epidural analgesia, increased 

FIG. 1. Bar graph of the differences in rates of POUR based on patient demographics and medication use of the overall cohort (n = 
891). Frequencies (N) and p values comparing those who did and did not develop urinary retention are listed in the label. Red bars 
= included in binomial logistic regression and neural network models. Blue bars = only included in neural network model. Figure is 
available in color online only.
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fluid volume, higher pain scores, opioid consumption, gly-
copyrrolate use, history of urinary retention, benign pros-
tate hyperplasia, and UTIs.6,9,​13,​17,​18,​20,21 Although we did 
not find all these variables relevant, we found diabetes, 
heartbeat abnormalities, altered mental status, and prior 
screening for cardiovascular disorders to be significant 
predictors of POUR. General symptoms, not otherwise 
specified, and plans for a single laminectomy were found 
to be predictive of not developing POUR. Epidural anal-
gesia is not commonly performed in the neurosurgery de-
partment at our institution, and was not performed on any 
of the patients in this study.

Preventive strategies for POUR exist but are associated 
with important risks—thus, refining patient selection for 
these interventions is a highly relevant clinical quest. Al-
though intraoperative bladder catheter placement has been 
shown to reduce POUR incidence in elective spine surger-
ies, intraoperative catheters are commonly placed only in 
procedures lasting > 2–3 hours, because their use is asso-
ciated with higher risk of UTI, increased operating room 
time, and increased patient discomfort (overall outweigh-
ing the benefit).34 A modification of this approach, immedi-
ate postoperative bladder scans and bladder catherization 
if bladder volume is > 450 mL, can significantly reduce the 
number of urine catheter placements required postopera-
tively.35 Furthermore, the initiation of opioid-sparing post-
operative analgesia—specifically gabapentin—can reduce 
postoperative opioid consumption, which in turn may re-

duce the occurrence of POUR.36 Despite these approaches 
enacted at our institution (including a stricter bladder scan 
cutoff of 400 mL), rates of POUR remain at 25.9%. An-
other successful option is a short course of detrusor re-
laxants such as alpha-1 antagonists, which are effective in 
reducing POUR in at-risk patients;37 however, these are as-
sociated with significant adverse effects (i.e., hypotension, 
syncope, arrhythmia, hypersensitive syndrome, Stevens-
Johnson syndrome, exfoliative dermatitis, priapism, and 
somnolence). Determining which patients are to be labeled 
at risk, who would qualify for prophylactic initiation of 
such targeted medication, remains to be elucidated.

In this study, we developed two preoperative risk as-
sessment tools that could predict POUR in lumbar sur-
gery: one based on regression modeling and one based 
on neural network modeling. The first, binomial logistic 
regression, estimates the probability that an outcome is 
present given the values of explanatory variables and is 
typically used for classification.31 The second, an artificial 
neural network, is attractive because it demonstrates an 
ability to learn salient features of the data on its own as 
well as solve very complex problems.19 Factors included 
in model development consisted of preoperative patient 
factors and planned surgical approaches, all of which are 
known to care providers prior to the surgical episode, 
hence allowing for feasibility of the use of the model 
preoperatively. The regression model is the simpler tool, 
requires only information easily available via medical re-

FIG. 2. Bar graph of the differences in rates of POUR based on planned surgical characteristics of the overall cohort (n = 891). 
Frequencies of the surgery type (N) and p values comparing those who did and did not develop urinary retention are listed in the 
label. Red bars = included in binomial logistic regression and neural network models. Blue bars = only included in neural network 
model. Figure is available in color online only.
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cords, and was found to have an adequate AUC of 0.737. 
The neural network model was also found to have an ad-
equate AUC of 0.735; however, its use entails listing all 
individual variables and performing matrix multiplication. 
Although it is a useful tool for prediction, the black-box 
nature of deep neural networks is a well-documented ob-

stacle, and although much research and progress have been 
made on this front, it is outside of the scope of the cur-
rent study to interpret the results of the model.38 Stacking 
models (i.e., combining them) has been shown to optimize 
predictive power by leveraging the strengths of individual 
models and avoiding their weaknesses.32,39 By combining 

TABLE 2. Multivariate binomial logistic regression analysis for development of the POUR tool

Variable Effect SE p Value OR
95% CI for OR

Lower Upper

Age (yrs) 0.002 0.008 0.780 1.002 0.986 1.019
Preop opioid use −0.121 0.273 0.658 0.886 0.520 1.512
BMI (kg/m2) −0.006 0.019 0.759 0.994 0.958 1.032
Diabetes (E11.9) 0.953 0.485 0.050 2.593 1.001 6.713
Cardiomegaly (I51.7) 1.070 0.571 0.061 2.916 0.952 8.933
Hypotension (I95.9) 0.842 0.535 0.115 2.322 0.813 6.629
Ileus (K56.7) 1.240 0.844 0.142 3.455 0.660 18.077
Constipation (K59.00) 1.192 0.657 0.070 3.293 0.909 11.926
Other intestinal disease (K63.89) 0.725 0.653 0.267 2.064 0.574 7.420
Spondylolisthesis (M43.16) 0.408 0.312 0.191 1.504 0.815 2.772
UTI (N39.0) 1.405 1.001 0.161 4.075 0.573 28.996
Abnormalities of heartbeat (R00) 0.982 0.446 0.028 2.670 1.114 6.395
Other general symptoms & signs (R68.89) −1.605 0.705 0.023 0.201 0.050 0.800
Altered mental status (R41.82) 3.013 1.186 0.011 20.356 1.990 208.226
Urinary retention (R33.9) 1.103 0.759 0.146 3.013 0.681 13.330
Pain (R52) 1.204 0.729 0.099 3.334 0.798 13.925
Encounter for other preprocedural exam (Z01.818) 0.464 0.494 0.348 1.591 0.604 4.190
Encounter for screening for cardiovascular disorders (Z13.6) 1.587 0.599 0.008 4.889 1.512 15.807
Persons w/ potential health hazards related to family & personal 
history & certain conditions influencing health status (Z77–Z99)

0.285 0.287 0.321 1.329 0.757 2.334

Planned laminectomy 0.479 0.265 0.071 1.614 0.960 2.714
Planned single fusion −0.221 0.474 0.642 0.802 0.317 2.031
Planned pelvic screw −0.540 0.467 0.247 0.583 0.233 1.454
Planned single laminectomy −0.975 0.322 0.003 0.377 0.201 0.710
Planned single interbody fusion −0.439 0.506 0.386 0.645 0.239 1.738
Constant −1.583 0.889 0.075 0.205

SE = standard error.
Boldface type indicates statistical significance.

TABLE 3. Prediction outcomes for the POUR tool

Sets & Models AUC Specificity Sensitivity NPV PPV

Training set (probability cutoff = 0.5)
  Regression 0.808 95.4 42.0 81.9 76.8
  Neural network 0.753 94.4 26.0 77.8 62.9
Testing set (probability cutoff = 0.5)
  Regression 0.737 94.3 25.4 79.0 60.0
  Neural network 0.735 94.9 20.3 78.0 57.1
  Aiyer et al., 201818 0.645 95.6 6.2 75.7 31.3
  Mormol et al., 202117 0.638 94.4 7.4 75.7 30.0
  Nickerson et al., 201619 0.559 98.8 6.2 76.3 62.5
  Altschul et al., 20173 0.516 95.6 7.4 76.0 35.3
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the two models, a predictor tool with an AUC of 0.753 was 
created, making this a high-performing, acceptable tool.40 
Different cutoff points were furthermore revealed to op-
timize different predictive parameters; it is our opinion 
that cutoff points of 0.24 for the regression model and 0.23 
for the neural network model, which maximize specificity 
and sensitivity, provide the most practical results. When 
compared to previously published models, each individ-
ual model and its combination outperform prior models, 
which had an AUC range of 0.516–0.645.3,17–19

Strengths of this study include the ability to separate the 
cohort into training, validation, and naïve testing sets. This 
afforded us the opportunity to validate our models as com-
pared to reporting results that were strictly applied to the 
data from which the model was developed. Additionally, 
by combining the two predictive models, we were able to 

optimize predictive power by leveraging the strengths of 
each individual model and avoiding its weaknesses. Fur-
thermore, by optimizing cutoff points, the reader is able to 
use the predictor tool to their individual specifications. As 
an example, one may wish to have a better specificity and 
NPV at the sacrifice of sensitivity and PPV. Last, the Excel 
document provided affords the reader an opportunity to 
easily use this complex model, with easy drop-down op-
tions and cut-paste forms.

Limitations of this study include its retrospective de-
sign and its untested external validity given that this study 
was conducted at a single institution. Because the model 
selection strategy was aimed at prediction and not inter-
pretation, we cannot elaborate further on the meaning of 
specific predictors included in the models. Although no 
steps were taken to ameliorate overfitting (i.e., regulariza-

FIG. 3. Receiver operating characteristic curves for patients comparing regression model (dashed blue line), neural network model 
(dashed-dotted green line), and the stacked model (solid yellow line) combining the two. Figure is available in color online only.

TABLE 4. Model cutoff points to maximize prediction outcomes for stacked (combined) model 
(AUC = 0.753)

Regression Cutoff Neural Network Cutoff Specificity (%) Sensitivity (%) NPV (%) PPV (%)

— 0.14 27.8 96.6 96.1 31.0
0.54 0.43 99.4 15.3 77.8 90.0
0.24 0.23 72.9 68.2 88.2 43.4
0.54 0.43 99.4 15.3 77.8 90.0
0.54 0.43 99.4 15.3 77.8 90.0
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FIG. 4. Scatterplot for the testing set (N = 235) of the predicted probabilities of the regression model (y-axis) compared to the 
neural network model (x-axis) demonstrating (A) optimal cutoff points of 0.43 and 0.54, respectively, and (B) optimal cutoff points 
of 0.23 and 0.24, respectively, for combining the two models. By combining the two models using an “and” conjunction, the upper 
right quadrant (red shaded area) represents a positive test result. Thus, a green diamond in this area represents a true positive, 
whereas a blue circle in this area represents a false positive. A green or blue marker in the other quadrants represents a false 
negative or a true positive, respectively. Figure is available in color online only.
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tion or dropout) in the neural network model, the notable 
similarity to its training set performance supports forgo-
ing these efforts. The validation set was found to have a 
significantly higher ASA class and fewer comorbidities. 
However, this set was only used to train the models, and 
because the training and testing sets had no significant dif-
ferences between these two factors, no further correction 
was deemed necessary. Due to an insufficient number of 
outpatient and 23-hour observations in the testing group, 
application of the prediction tool in this subpopulation was 
unable to be tested. This type of subanalysis will be easier 
to conduct with ongoing prospective studies.

Conclusions
Our predictive model can be a powerful preoperative 

tool in predicting patients who will be likely to develop 
POUR. By using a combination of regression and neural 
network modeling, good sensitivity, specificity, and NPV 
are achieved. Furthermore, our tool outperforms previ-
ously published models, with the caveat that these models 
were not designed to be used as a preoperative tool and 
originally incorporated intraoperative and postoperative 
factors that were removed for the purposes of this study. 
Ongoing and future efforts aim to validate the prediction 
tool in a prospective manner, broaden its focus to multiple 
institutions, apply the tool to test preventive strategies, and 
use its results to aid in discovery of a point-of-care test to 
enhance its predictive power.
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